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Abstract A novel paradigm for designing and programming future parallel com-
puting systems calledinvasive computingis proposed. The main idea and novelty
of invasive computing is to introduceresource-aware programmingsupport in the
sense that a given program gets the ability to explore and dynamically spread its
computations to neighbour processors in a phase called invasion, then to execute
portions of code of high parallelism degree in parallel based on the availableinva-
sibleregion on a given multi-processor architecture. Afterwards, once the program
terminates or if the degree of parallelism should be lower again, the program may
enter aretreat phase, deallocate resources and resume execution again, for exam-
ple, sequentially on a single processor. In order to supportthis idea of self-adaptive
and resource-aware programming, not only new programming concepts, languages,
compilers and operating systems are necessary but also revolutionary architectural
changes in the design of MPSoCs (Multi-Processor Systems-on-a-Chip) must be
provided so to ef�ciently support invasion, infection and retreat operations involv-
ing concepts for dynamic processor, interconnect and memory recon�guration. This
contribution reveals the main ideas, potential bene�ts, and challenges for support-
ing invasive computing at the architectural, programming and compiler level in the
future. It serves to give an overview of required research topics rather than being
able to present mature solutions yet.
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Introduction

Decreasing feature sizes have already led to a rethinking ofhow to design multi-
million transistor system-on-a-chip architectures envisioning dramatically increas-
ing rates of temporary and permanent faults as well as feature variations. The major
question will thus be how to deal with this imperfect world [11] in which compo-
nents will become more and more unreliable. As we can foreseeSoCs with 1000 or
more processors on a single chip in the year 2020, static and central management
concepts to control the execution of all resources might have met their limits long
before and are therefore not appropriate. Invasion might provide the requiredself-
organisingbehaviour to conventional programs for being able not only to tolerate
certain types of faults and cope with feature variations, but also to provide scalabil-
ity, higher resource utilisation numbers and, hopefully, also performance gains by
adjusting the amount of allocated resources to the temporalneeds of a running ap-
plication. This thought might open a new way of thinking about parallel algorithm
designas well. Based on algorithms utilising invasion and negotiating resources
with others, we can imagine that corresponding programs becomepersonalisedob-
jects, competing with other applications running simultaneously on an MPSoC.

Parallel Processing has Become Mainstream

Miniaturisation in the nano era makes it possible already now to implement bil-
lions of transistors, and hence, massively parallel computers on a single chip with
typically 100s of processing elements.

Whereas parallel computing tended to be only possible in huge high performance
computing centres some years ago, we see parallel processortechnology already
in home PCs, but interestingly also in domain-speci�c products such as computer
graphics and gaming devices. In the following description,we picked out just four
representative instances out of many domain-speci�c examples of massively parallel
computing devices using MPSoC technology that have alreadyfound their way into
our homes:

� Visual Computing and Computer Graphics: As an example, the Fermi CUDA
architecture [3], as it is implemented on NVIDIA graphics processing units
(GPUs) is equipped with 512 thread processors which providemore comput-
ing power than 1 TFLOPS as well as 6 GB GDDR5 (Graphics Double Data
Rate, version 5) RAM. To enable �exible, programmable graphics and high-
performance computing, NVIDIA has developed the CUDA scalable uni�ed
graphics and parallel computing architecture [9]. Its scalable parallel array of
processors is massively multithreaded and programmable inC or via graphics
APIs. Another brand-new platform for visual computing is Intel's Larrabee [15].
Although the platform will not yet be commercially available in its �rst version in
2010, Larrabee introduces a new software rendering pipeline, a many-core pro-
gramming model and uses multiple in-order x86 CPU cores thatare enhanced
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by a wide vector processor unit, as well as several �xed function logic blocks.
This provides dramatically higher performance per Watt andper unit of area than
out-of-order CPUs in case of highly parallel workloads. It also greatly increases
the �exibility and programmability of the architecture as compared to standard
GPUs. A coherent on-die 2nd level cache allows ef�cient inter-processor commu-
nication and high-bandwidth local data access by CPU cores.Task scheduling is
performed entirely with software in Larrabee, rather than in �xed function logic.

� Gaming: The Cell processor [10] such as part of Sony's PLAYSTATION 3con-
sists of a 64-bit Power Architecture processor coupled withmultiple synergistic
processors, a �exible I/O interface and a memory interface controller that sup-
ports multiple operating systems. This multi-core SoC, implemented in 65 nm
SOI (Silicon On Insulator) technology, achieves a high clock rate by maximising
custom circuit design while maintaining reasonable complexity through design
modularity and reuse.

� Signal Processing: Application-speci�c tightly-coupled processor arrays (TC-
PAs). For applications such as 1D or 2D signal processing, linear algebra and
image processing tasks, Figure 2 shows an example of an MPSoCintegrating 25
VLIW processors designed in Erlangen with more than one million transistors
on a single chip of size about 2 mm2. Contrary to the previous architectures, this
architecture is customisable with respect to instruction set, processor types and
interconnect [6, 8]. For such applications, the overhead and bottlenecks of pro-
gram and data memory including caches can often be avoided giving more chip
area for computations than for storage and management functions. Due to the fact
that the instruction set, word precisions, number of functional units and many
other parameters of the architecture may be customised for aset of dedicated ap-
plication programs to run, we call such architecturesweakly-programmable. It is
unique that the inter-processor interconnect topology maybe recon�gured at run-
time within a few clock cycles time by means of hardware recon�guration. Also,
the chip features ultra-low power consumption of about 130 mW when operating
at 200 MHz.

� NoC: In [18], Intel demonstrates the feasibility of packing 80 tile processors
on a single chip by introducing a 275 mm2 network-on-a-chip (NoC) architec-
ture where each tile processor is arranged as a 10� 8 2D array of �oating-
point cores and packet-switched routers, operating at 4 GHz. The design employs
mesochronous clocking, �ne-grained clock gating, dynamicsleep transistors and
body-bias techniques. The 65 nm 100 M transistor die is designed to achieve a
peak performance of 1.0 TFLOPS at 1 V while dissipating 98 W. Very recently,
Intel announced a successor chip, calledSingle-chip Cloud Computer(SCC),
with 48 fully programmable processing cores manufactured in 45 nm technology.
In contrast to the 80 core prototype, Intel plans to build 100or more experimental
SCC chips for use by industrial and academic research collaborators.

Note that there exists a multitude of other typically domain-speci�c massively
parallel MPSoCs that cannot be listed here. Different domains of applications have
also brought up completely different types of architectures. One major distinguish-
ing factor is that concurrency is typically exploited at different levels of granularity
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Fig. 1 Levels of parallelism including process-level, thread-level, loop-level, instruction-level as
well as word-level and bit-level. The architectural correspondence is shown on the right side in-
cluding parallel computers, heterogeneous MPSoCs and tightly-coupled processor array architec-
tures, �nally VLIW and bit-level parallel computing. Invasive computing shall be investigated on
all shown levels.

and levels of architectural parallelism as shown, for example, in Figure 1. Starting
with process- and thread-level applications running on high performance computing
(HPC) machines or heterogeneous Multi-Processor System-on-a-Chip architectures
(MPSoCs) down to the loop-level for which tightly-coupled processor arrays match
well, and �nally instruction and bit-level type of operations.

Obstacles and Pitfalls in the Years 2020 and Beyond

Already now can be foreseen that MPSoCs in the years 2020 and beyond will allow
to incorporate about 1000 and more processors on a single chip. However, we can
anticipate several major bottlenecks and shortcomings when obeying existing and
common principles of designing and programming MPSoCs. Thechallenges related
to these problems have motivated our idea of invasive computing:

� Programmability:How to map algorithms and programs to 1000 processors or
more in space and time to bene�t from the massive parallelismavailable and by
tolerating defects and manufacturing variations concerning memory, communi-
cation and processor resources properly?

� Adaptivity: The computing requirements of emerging applications to run on an
MPSoC may not be known at compile-time. Furthermore, there is the problem
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Fig. 2 Architecture of a 5� 5 processor MPSoC customised for image �ltering type of operations
Technology: CMOS 1.0 V supply voltage, 9 metal layers, 90 nm standard cell design. VLIW mem-
ory/PE: 16 times 128, FUs/PE: 2 times Add, 2 times Mul, 1 timesShift, 1 times DPU. Registers/PE:
15. Register �le/PE: 11 read and 12 write ports. Con�guration Memory: 1024 times 32 = 4 kByte.
Operating frequency: 200 MHz. Peak Performance: 24 GOPS. Power consumption: 132.7 mW @
200 MHz (hybrid clock gating). Power ef�ciency: 0.6 mW/MHz.Chair for Hardware/Software Co-
Design, Erlangen, 2009.

of how to dynamically control and distribute resources among different appli-
cations running on a single chip, in order to satisfy high resource utilisation and
high performance constraints. How and to what degree shouldMPSoCs therefore
be equipped with support for adaptivity, for example, recon�gurability, and to
what degree (hardware/software, bit, word, loop, thread, process-level)? Which
gains in resource utilisation may be expected through run-time adaptivity and
temporary resource occupancy?

� Scalability: How to specify algorithms and programs and generate executable
programs that run ef�ciently without change on either 1, 2, or N processors? Is
this possible at all?

� Physical Constraints:Heat dissipation will be another bottleneck. We need
sophisticated methods and architectural support to run algorithms at different
speeds, to exploit parallelism for power reduction and to manage the chip area in
a decentralised manner.

� Reliability and Fault-Tolerance: The continuous decrease of feature sizes will
not only inevitably lead to higher variances of physical parameters, but also af-
fect reliability, which is impaired by degradation effects[11]. In consequence,
techniques must be developed to compensate and tolerate such variations as well
as temporal and permanent faults, that is, the execution of applications shall be
immune against these. Hence, conventional and centralisedcontrol will fall off
this requirement, see, for example, [11]. Furthermore,thecontrol of such a par-
allel computer with 100s to 1000s of processors would also become a major
performance bottleneck if centrally controlled.
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Finally, whereas for a single application the optimal mapping onto a set of pro-
cessors may be computed and optimised often at compile-timewhich holds in par-
ticular for loop-level parallelism and corresponding programs [5, 6, 7], a static map-
ping might not be feasible for execution at run-time becauseof time-variant resource
constraints or dynamic load changes. Ideally, the interconnect structure should be
�exible enough to dynamically recon�gure different topologies between compo-
nents with little recon�guration and area overheads.

With the above problems in mind, we propose a new programmingparadigm
called invasive computing. In order for this kind of resource-aware programming
concept become reality and main stream, new processor, interconnect and memory
architectures, exploiting dynamic hardware recon�guration will be required.Inva-
sive computingdistinguishes itself from common mainstream principles ofalgo-
rithm and architecture design in industry on multiple (for example, dual, quadruple)
and many-core architectures, as these will still be programmed more or less using
conventional languages and programming concepts. In orderto increase the scope
and applicability, however, we do require that legacy programs shall still be exe-
cutable within an invasive processor architecture. To achieve this, a migration path
from traditional programming to the new invasive programming paradigm needs to
be established.

Principles and Challenges of Invasive Computing

In vision of the above capabilities of todays hardware technology, we would like to
propose a completely new paradigm of parallel computing called invasive comput-
ing in the following.

One way of how to manage the control of parallel execution in MPSoCs with
100s of processors in the future would obviously be to give the power to manage
resources, that is, link con�gurations and processing elements to the programs them-
selves and thus, have the running programs manage and coordinate the processing
resources themselves to a certain degree and in context of the state of the underly-
ing compute hardware. This cries for the notion of a self-organising parallel program
behaviour calledinvasive programming.

De�nition: Invasive Programming denotes the capability of a program running
on a parallel computer to request and temporarily claim processor, communication
and memory resources in the neighbourhood of its actual computing environment,
to then execute in parallel the given program using these claimed resources, and to
be capable to subsequently free these resources again.

We shall show next what challenges will need to be solved in order to support
invasive computing on the architectural, on the notationaland on the algorithmic
and programming language sides.
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Architectural Challenges for the Support of Invasive Computing

Figure 3 shows how a generic invasive multi-processor architecture including loosely-
coupled processors as well as tightly-coupled co-processor arrays may look like.
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Fig. 3 Generic invasive multi-processor architecture includingseveral loosely-coupled processors
(standard RISC CPUs andinvasive cores, so-calledi-Cores) as well as tightly-coupled processor
arrays (TCPAs).

In order to present the possible operational principles of invasive computing,
we shall provide an example scenario each for a) tightly-coupled processor arrays
(TCPAs), b) loosely-coupled, heterogeneous systems and c)HPC systems.

An example of how invasion might operate at the level of loop programs for
a tightly-coupled processor array (TCPA) as part of a heterogeneous architecture
shown in Figure 3 is demonstrated in Figure 4. There, two programsA1 andA2
are running in parallel and a third programA3 starting its execution on a single
processor in the upper right corner.

In a phase of invasion,A3 tries to claim all of its neighbour processors to the west
to contribute their resources (memory, wiring harness and processing elements) to
a joint parallel execution. Once having reached borders of invasion, for example,
given by resources allocated already to running applications, or, in case the degree
of invasion is optimally matching the degree of available parallelism, the invasive
program starts to copy its own or a different program into allclaimed cells and then
starts executing in parallel, see, for example, Figure 5.
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Fig. 4 Case study showing a signal processing application (A3) invading a tightly-coupled proces-
sor array (TCPA) on which two programsA1 andA2 are already executing. ProgramA3 invades
its neighbour processors to the west, infects claimed resources by implanting its program into
these claimed cells and then executes in parallel until termination. Subsequently, it may free used
resources again (retreat) by allowing other neighbour cells to invade.

In case the program terminates or does not need all acquired resources any more,
the program could collectively execute aretreat operation and free all processor
resources again. An example of a retreat phase is shown in Figure 6. Please note that
invade and retreat phases may evolve concurrently in a massively parallel system,
either iteratively or recursively.

Technically speaking, at least three basic operations to support invasive program-
ming will be needed, namelyinvade, infectandretreat. It will be explained next that
these can be implemented with very little overhead on recon�gurable MPSoC archi-
tectures such as a tightly-coupled processor array like a WPPA [8] or the AMURHA
[17] architecture in a few steps by issuing recon�guration commands that are able to
recon�gure subdomains of interconnect and cell programs collectively in just a few
clock cycles, hence with very low overhead. In [6], for example, we have presented
a masking scheme such that a single processor program of sizeL can be copied
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Fig. 5 TCPA hosting a signal processing application (A3) together with two other programsA1
andA2 (after invasion).

in O(L) clock cycles into an arbitrarily sized rectangular processor region of size
N � M.

Hence, the time overhead for an infection phase, comparableto the infection of a
cell of a living being by a virus, can be implemented in lineartime with respect to the
size of a given binary program memory imageL. In case of a tightly-coupled proces-
sor array running typically in a clock-synchronous manner,we intend to prove that
invasion requires onlyO(maxf N;Mg) clock cycles whereN � M denotes the max-
imally claimable or claimed rectangular processor region.Before subsequent cell
infection, an invasion hardware �ag might be introduced to signal that a cell is im-
mune against subsequent invasion requests until this �ag isreset in the retreat phase.
In contrast to the initial invasion phase, the retreat phaseserves to free claimed re-
sources after parallel execution. As for invasion, we intend to show that retreat can
be performed decentrally in timeO(maxf N;Mg) [16].

The principles of invasion apply similarly to heterogeneous MPSoC architec-
tures, as shown in Figure 1. Here, invasion might be exploredat the thread-level
and implemented, for example, by using anagent-basedapproach that distributes
programs or program threads over processor resources of different kinds.
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Fig. 6 Options for invasion (uni- vs. multi-directional) and retreat phases.

At this level, dynamic load-balancing techniques might be applied to imple-
ment invasion. For example, diffusion-based load balancing methods [4, 1, 12] are
a simple and robust distributed approach for this purpose. Even centralised algo-
rithms based on global prioritisation can be made scalable using distributed priority
queues [13]. Very good load balancing can be achieved by a combination of ran-
domisation and redundancy, using fully distributed and fast algorithms (for example,
[14]).

Figure 7 shows by example how invasive computing for loosely-coupled multi-
core architectures consisting of standard RISC processorscould work. These cores
may—together with local memory blocks or hardware accelerators (not shown in
the �gure)—be clustered in compute tiles, which are connected through a �exible
high-speed NoC interconnect. In general, an operating system is expected to run
in a distributed or multi-instance way on several cores and may be supported by a
run-time environment.

To enable invasive computing on such MPSoCs, an ef�cient, dynamic assignment
of processing requests to processor cores is required. Timeconstants for starting
processing on newly claimed CPUs is expected to be considerably longer than in
the case of tightly-coupled processors. Therefore, we envision the corresponding
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Fig. 7 Invasive computing on a loosely-coupled MPSoC architecture

mechanisms to be implemented in a hardware-based support infrastructure using
Dynamic Many-Corei-let1 Controllers (CIC), which help to limit the impairments
of any overhead associated with the invasion/infection process.

Invasive operating and run-time support services invade processing resources
when new processing requirements have to be ful�lled. The invasion process con-
siders monitoring information on the status of the hardwareplatform received via
the CICs, which are contained in each compute and I/O tile. Asa result of invasion,
CICs are con�gured for the appropriate forwarding of the associated processing
requests. This forwarding actually corresponds to the infection of the invaded pro-
cessor cores. The �nal assignment may be based on a set of rules that implement
an overall optimisation strategy given by the invasive operating system. Criteria to
be taken into account in this context may, for example, be theload situation of
processing or communication resources, the reliability pro�les of the cores or the
temperature pro�le of the die.

The CICs dynamically map processing requests to processor cores under the con-
trol of the operating system and the run-time environment (iRTSS). These requests
may either be generated when

� an application wants to spawn additional parallel processes or threads, for exam-
ple, depending on interim processing results (shown in the right part of Figure 7,
dashed-dotted line), or when

� data arriving via external interfaces (for example, sensoror video data, network
packets), which represent processing requests, have to be distributed to the ap-
propriate processing resources (shown in the left part of Figure 7, straight and
dashed arrows).

1 For the explanation of thei-let concept see paragraph “units of invasion” below.
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In the �rst case, a so-calledi-let will be created for a new thread to be spawned
and sent towards the invaded resource. The CIC in the target compute tile will dis-
tribute thei-let to one of the cores depending on the rules given by the operating
system/iRTSS, which take into account the actual load situation and other status
information. In case there is not enough processing capacity available locally, the
rules may also indicate to forward thei-let to the CIC of a compute tile with free
resources in the neighbourhood, as shown in Figure 7 for the bottom right compute
tile.

For the second case, if more traf�c arrives from external senders than can be
processed by the left compute tile, the invasive operating system or even the CIC
itself—if authorised by the operating system—shall invadea further CPU cluster.
In case of success, the CIC rules would be updated and in consequence excess re-
quests (designated asi-data—invasive data—in Figure 7) would be distributed to
the newly invaded resources to cope with the increased processing requirements. In
order to avoid latencies in the invasion triggered by the operating system, resources
may already have been invaded earlier, for example, when a threshold below the
acceptable load is exceeded.

In this way, MPSoCs built out of legacy IP cores can be enabledfor invasion and
thus provide applications with the required processing resources at system run-time,
which helps to meet performance requirements and at the sametime to facilitate
ef�cient concurrent use of the platform. As applications can expand and contract on
the MPSoC dynamically, we also expect that less resources are required in total to
provide the same performance as would be needed if resource assignment is done at
compile-time.

Finally, the paradigm of invasion offers even a new perspective for programming
large scale HPC computers according to Figure 1 with respectto the problem classes
of space partitioningandadaptive resource management.

Today, resource management on large scale parallel systemsis done using space
partitioning: The available processors and memories are statically partitioned among
parallel jobs. Once a job is started on these resources, it has exclusive access for its
entire life-time. This strategy becomes inadequate if moreand more parallelism has
to be exploited to obtain high performance on future petascale systems. As the cores
will most likely not be getting much faster (in terms of clockrates) in the future,
applications will bene�t from a maximum number of processors only during certain
phases of their life-time, and can run ef�ciently during therest of their life-time
using a smaller number of processors.

Moreover, there exist applications that have inherently variable requirements for
resources. For example, multi-grid applications work on multiple grid levels ranging
from �ne to coarse grids. On �ne grids, many processors can work ef�ciently in
parallel while only a few a able to do so on coarse grids. Thus,processors can
be freed during coarse grid computation and assigned to other jobs. Another class
of applications is that ofadaptive gridapplications, where the grid is dynamically
re�ned according to the current solution. Applications mayalso proceed through
different phases in which different amount of parallelism might be available. For
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example, while in one phase, a pipeline structure with four stages can be used, two
different functions can be computed in parallel in another phase.

Notational Issues for the Support of Invasive Computing

Obviously, in order to enable a program to distribute its computations for parallel
execution through the concept of invasion, we need to establish a new programming
paradigm and program notation to express the mentioned phases of a) invasion, b)
infection and c) retreat. Either existing parallel programnotations and languages
might be extended or pragma and special compiler modi�cations might be estab-
lished to allow the speci�cation of invasive programs.

In the following, we propose a minimal set of required commands to support
resource-aware programming, independent of the level of concurrency and archi-
tectural abstraction. This informal and minimal notation only serves to give an idea
of what kind of basic commands will be needed to support invasive programming
and how such programs could be structured.

Invade. In order to explore and claim resources in the (logical) neighbourhood of a
processor running a given program, theinvade instruction is needed. This com-
mand could have the following syntax:

P = invade(sender id, direction, constraints)

wheresender id is the identi�er, for example, coordinate of the processor start-
ing the invasion, anddirection encodes the direction on the MPSoC to invade,
for example,North , South , West , East or All in which case the invasion is
carried out in all directions of itsneighbourhood. For heterogeneous MPSoC archi-
tectures, the neighbourhoodcould be de�ned differently, for example, by the number
of hops in a NoC. Other parameters not shown here areconstraints that could
specify whether and how not only program memory, but also data memory and in-
terconnect structures should be claimed during invasion. Further, invasion might
be restricted to certain types of processors and resources.During invasion, each
claimed resource is immediately immunised against invasion by other applications
and until they are freed explicitly in the �nal retreat phase. Hence, the operational
semantics of the invade command is resource reservation.

Now, a typical behaviour of an invasive program could be to claim as many re-
sources in its neighbourhood as possible. Using theinvade command, a program
could determine the largest set of resources to run on in a fully decentralised man-
ner. The return parameterP could, for example, encode either the number of proces-
sors or the size of the region it was able to successfully invade. Another variant of
invade could be to claim only a �xed number of processors in each direction. For
example, Figure 4 illustrates the case of a signal processing applicationA3 running
concurrently with two applicationsA1 andA2. Here, the signal processing applica-
tion is issuing an invade command to all processors to its west. Figure 5 shows the
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running algorithmA3 after successful invasion.

Infect. Once the borders of invasion are determined and corresponding resources
reserved, the initial single-processor program could issue aninfect command
that copies the program like a virus into all claimed processors. In case of a tightly-
coupled processor array (TCPA) architecture, we anticipate to be able to show how
to implement this operation for a rectangular domain of processors in timeO(L)
whereL is the size of the initial program. Also, the interconnect recon�guration
may be initialised for subsequent parallel execution. As for theinvade command,
infect could have several more parameters considering modi�cations to apply to
the copied programs such as parameter settings, and of course also the recon�gura-
tion of interconnect and memory resource settings. Note that the infect command in
its most general form might also allow a program to copy not only its own, but also
foreign code to other processors. After infection, the parallel execution of the initial
and all infected resources may start.

Retreat. Once the parallel execution is �nished, each program may terminate or
just allow the invasion of its invaded resources by other programs. Using a spe-
cial command calledretreat , a processor can, for example, in the simplest case
just initiate to reset �ags that subsequently would allow other invaders to succeed.
Again, this retreat procedure may hold for interconnect as well as processing and
memory resources and is therefore typically parametrised.Different possible op-
tions of typical invade and retreat commands for tightly-coupled processor arrays
(TCPAs) are shown in Figure 6.

Algorithmic and Language Challenges for the Support of Invasive Computing

We have stated thatresource-awarenesswill be central to invasive computing. Ac-
cordingly, not only the programmer, but already the algorithm designers should re-
�ect and incorporate this idea that algorithms may interactand react to the temporal
availability and state of processing resources and possible external conditions.

However, this invasive computing paradigm raises interesting questions for al-
gorithm design and complexity analysis. It will also generate questions concerning
programming languages, such as semantic properties of a core invasive language
with explicit resource-awareness.

We would like to mention, however, that the idea of invasion is not tightly re-
lated or restricted to a certain programming notation or language. We plan to de�ne
fundamental language constructs for invasion and resource-awareness, and then em-
bed these constructs into existing languages such as C++ or X10. In fact, accord-
ing to preliminary studies it seems that X10 [2] is the only available parallel lan-
guage which already offers a fundamental concept necessaryfor invasive comput-
ing: X10 supports distributed, heterogeneous processor/memory architectures. Also,
we would like to show how invasion can be supported in currentprogramming mod-
els such as OpenMP and MPI.
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What is essential and novel in the presented idea of invasivealgorithms is that in
order to support the concept of invasion properly,a program must be able to issue
instructions, commands, statements, function calls or process creation and termina-
tion commands that allow itself to explore and claim hardware resources.There is
a need to study architectural changes with respect to existing MPSoC architectures
in order to support these concepts properly.

Resource-aware Programming.Invade, infect and retreat constitute the basic op-
erations that shall help a programmer to manipulate the execution behaviour of a
program on the underlying parallel hardware platform.

On the other hand, invasive computing shall provide and helpthe programmer to
decide whether to invade at a certain point of program execution in dependence of
the state of the underlying machine. For example, such a decision might be in�u-
enced by the local temperature pro�le of a processor, by the current load, by certain
permissions to invade resources and, most importantly, also by the correct function-
ing of the resources. Taking into account such information from the hardware up
to the application-level provides an interesting feedback-loop as shown in Figure 8
that enables resource-aware programming.

i-let

- invade
- infect
- retreat
- …

- permission
- speed
- utilization
- power/
temp

- fault/error

- permission
- speed
- utilization
- power/
temp

- fault/error

Fig. 8 Resource-aware programming is a main feature of invasive computing. By providing
a feedback-loop between application and underlying hardware platform, an application pro-
gram/thread, calledi-let, may decide if and which resources to invade, infect, orretreat at run-time;
depending on the current state of the underlying parallel hardware platform. Examples of proper-
ties that need to be exploited are permissions, speed/performance as well as utilisation monitor
information, but also power and temperature information and, most importantly, also information
about faults and errors.

For example, the decision to invade a set of processors may betaken condition-
ally at a certain point within a given invasive program depending on whether the
temperature of a processor is exceeding 85� C and if there are processors around
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with permission to be invaded and average load under 50 %. More complex scenar-
ios may be de�ned as well.

Such information provided from the hardware to the application program could
thus lead to program executions that take the dynamic situation of the underlying
hardware platform into account and permits to dynamically exploit the major bene-
�ts of invasive computing, namely increase of fault-tolerance, performance, utilisa-
tion and reliability.

Units of Invasion. In the following, a piece of program subjected to invasive-
parallel execution is referred to as an “invasive-let”: in short, i-let.2 An i-let is the
fundamental abstraction of a program section being aware ofpotential concurrent
execution. Potentialbecause of the semantics of aninvade command, which may
indicate allocation of only one processing unit, for example, although plenty of these
might have been requested.Concurrent, instead of parallel, because of the possi-
bility that an allocated processing element will have to be multiplexed (in time)
amongst several threads of control in order to make available the grade of “paral-
lelism” as demanded by the respective application.

Such an abstraction becomes indispensable as a consequenceof resource-aware
programming, in which the program structure and organisation must allow for exe-
cution patterns independently of the actual number of processing elements available
at a time. By matching the result of aninvade command, ani-let “entity” will then
be handed over toinfect in order to deploy the program snippet to be run con-
currently. Similarly,retreat cleans processing elements up from thei-let entities
that have been setup byinfect .

Depending on the considered level of abstraction, different i-let entities are dis-
tinguished: candidate, instance, incarnation and execution. An i-let candidaterep-
resents an occurrence of a parallel program section that might result in different
samples. These samples discriminate in the grade of parallelism as, for example,
speci�ed by a set of algorithms given the same problem to be solved. In such a set-
ting, each of these algorithms is considered to be optimal only for a certain range in
the exploration space.

In general,i-let candidates will be identi�ed at compilation-time based on ded-
icated concepts/constructs of the programming language (for example,async in
X10 [2]), assisted by the programmer. Technically, a candidate is made up of a spe-
ci�c composition of code and data. This composition is dealtwith as a single unit of
potential concurrent processing. Each of these unit descriptions is referred to as an
i-let instance. Given that ani-let candidate possibly comes in different samples, as
explained above, within a single invasive-parallel program, the existence of different
i-let instances will be a logical consequence. However, thisis not con�ned to a cate-
gorically one-to-one mapping betweeni-let candidate and instance. A one-to-many
mapping is conceivable as well. Cases of the latter are, for example, invasive-parallel
program patterns whosei-let candidates arrange for different granularity in termsof
program text and data sections, depending on the characteristics of the hardware

2 This conception goes back to the notion of a “servlet”, whichis a (Java) application program
snippet targeted for execution within a web server.
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resources (logically, virtually) available for parallel processing. Each of these will
then make up ani-let instance. Options include, for a singlei-let candidate, a set of
i-let instances likewise tailor-made for a TCPA, ASIP, dual-, quad-, hexa-, octa- and
even many-core RISC or CISC.

An i-let instance will be the actual parameter to theinfect command. Upon
execution ofinfect , the speci�ed instance becomes ani-let incarnation; that is,
ani-let entity bound to (physical) resources and set ready for execution. Depending
on these resources as well as on the operating mode subjectedto a particular pro-
cessing element, ani-let incarnation technically represents a thread of control of a
different “weight class”. In case of a TCPA, for example, each of these incarnations
will hold its own processing elements. In contrast, severalincarnations of the same
or differenti-let instances may share a single processing element in caseof a con-
ventional (multi-core) processor. The latter mode of operation typically assumes the
implementation of a thread concept as a technical means for processor multiplex-
ing. The need for processor multiplexing may be a temporary demand, depending
on the actual load of the computing machine and the respective user pro�le of an
application program.

In order to be able to abstract from the actual mode of operation of some pro-
cessing element, ani-let incarnation does not yet make assumptions about a speci�c
“medium of activity”, but it only knows about the type of its dedicated process-
ing element. It will be the occurrence as ani-let executionthat manifests that very
medium. Thus, at different points in time, ani-let incarnation for the same process-
ing element may result in different sorts ofi-let executions: The binding between
incarnation and execution of the samei-let may be dynamic and may change be-
tween periods of dispatching.

Behind this approach stands the idea of an integrated cooperation of different
domains at different levels of abstraction. At the bottom, the operating system takes
care ofi-let incarnation/execution management; in the middle, thelanguage-level
run-time system does so fori-let instances; and at the top, the compiler, assisted
by the programmers, provides for thei-let candidates. Altogether, this establishes
an application-centric environment for resource-aware programming and invasive-
parallel execution of concurrent processes.

Operating System Issues of Invasive Computing

The concept of resource-aware programming calls for operating-system functions
by means of which the use of hardware as well as software resources becomes pos-
sible in a way that allows applications to make controlled progress depending on the
actual state of the underlying machine. Resources must be related to invading execu-
tion threads in an application-oriented manner. If necessary, a certain resource needs
to be bound, for example, exclusively to a particular threador it has to be shareable
by a speci�c group of threads, physically or virtually. Optionally, the binding may
be static or dynamic, possibly accompanied by a signalling mechanism, likewise
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to asynchronously communicate resource-related events (for example, demand, re-
lease, consumption, or contention) from system to user level.

In order to support resource-aware execution of invasive-parallel programs as
indicated above, two fundamental operating system abstractions are being consid-
ered: theclaim and theteam. A claim represents a particular set of hardware re-
sources made available to an invading application. Typically, a claim is a set of
(tightly- or loosely-coupled) processing elements, but itmay also describe memory
or communication resources. Claims are hierarchically structured as (1) each of its
constituents is already a (single-element) claim and (2) a claim consists of a set of
claims. This shall allow for the marshalling of homogeneousor heterogeneous clus-
ters of processing elements. More speci�cally, a claim of processing elements also
provides means for implementing aplace, which is the concept of the programming
language X10 [2] to support a partitioned global address space. However, unlike
places, claims do not only de�ne a shared memory domain but also aim at provid-
ing a distributed-memory dimension.

In contrast, a team is the means of abstraction from a speci�cuse of a particular
claim in order to model some run-time behaviour as intended by a given applica-
tion. Similar to conventional computing, where a process represents a program in
execution, a team represents an invasive-parallel programin execution. More specif-
ically, a team is a set ofi-let entities and may be hierarchically structured as well:
(1) everyi-let already makes up a (single-element) team and (2) a team consists of a
set of teams. Teams provide means for the clustering or arrangement of interrelated
threads of execution of an invasive-parallel program. In this setting, an execution
thread may characterise ani-let instance, incarnation, or execution, depending on
whether that thread has been marshalled only, already deployed, or dispatched.

Application-oriented Run-Time Executive. A team needs to be made �t to its
claim. Reconsidering the three fundamental primitives forinvasive computing,
invade allocates and returns a claim, which, in addition to a team, will be handed
over to infect in order to deployi-let instances in accordance with the claim
properties. For deallocation (invade unaccompanied byinfect ) or depollution
(invade accompanied byinfect ), retreat is provided with the claim (set-out
by invade ) to be released or cleaned up, respectively.

Asserting a claim usinginvade will entail local and global resource allocation
decisions to be made by the operating system. Depending on the invading applica-
tion, different criteria with respect to performance and ef�ciency need to be taken
into account and brought in line. In such a setting of possibly con�icting resource
allocation demands, teams are considered as the kind of mechanism that enables the
operating system to let the computing machine work for applications in a �exible
and optimal manner. Teams will be dispatched on their claimsaccording to a sched-
ule that aims at satisfying the application demands. In order to improve application
performance, for example, this may result in a team schedulethat prevents or avoids
contention in case a particular claim is being multiplexed by otherwise unrelated
teams. As a consequence—and to come full circle—resource-aware programming
also means to pass (statically or dynamically derived)a priori knowledge about
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prospective run-time behaviour from user to system level inorder to aid or direct
the operating system in the process of con�ict resolution and negotiating compro-
mises.

Integrated Cooperative Execution.In order to achieve high performance and ef-
�ciency in the execution of thread-parallel invasive programs, various functions re-
lated to different levels of abstractions of the computing system need to cooperate.
Figure 9 exempli�es such an interaction by roughly sketching major activities asso-
ciated with the release and execution ofinvade , infect andretreat . As in
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Fig. 9 Possible levels (“columns”) of abstraction for achieving an integrated cooperative execu-
tion of invasive-parallel programs. The activity diagram sketches the �ow of control in the use
of invade , infect and retreat and shows three different phases of processing: resource
allocation, parallel execution and resource deallocation.

conventional computing systems, developers are free to choose the proper level of
abstraction for application programming and thus, may directly employinvade ,
infect andretreat in their programs. One of the ideas of invasive comput-
ing, however, is to also let a compiler (semi-) automatically derive these primitives
from programs written in a problem-oriented programming language. The displayed
nuance of abstraction interrelates a problem-oriented programming language level
(application, X10), an assembly level (compiler, run-timesystem), a machine pro-
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gramming level (run-time support system, operating system) and the hardware level.
In Figure 9, these levels are vertically arranged, in terms of columns from left to
right. In this setting, the hardware level implements the real machine of the comput-
ing system, while the other three levels implement abstractmachines. The functions
(that is, operations) provided by each of these machines arededicated to the purpose
of supporting invasive-parallel resource-aware programming.

Examples of Invasive Programs

In order to illustrate resource-aware programming and invasive computing, we shall
present four preliminary, but representative examples of invasive programs. Note
that these examples are pseudocode and are designed to demonstrate fundamental
invasive techniques. They shouldnot be interpreted as examples for a new invasive
programming language.

The �rst example (Figure 10) is a simple invasive ray tracer.Note that the goal of
this fragment of an invasive ray tracer is not ultimate performance, but maximal �ex-
ibility and portability of code between different platforms. In the �gure, the lower
implementation of the functionshade() belongs to an invasive ray tracer which
�rst tries to obtain a SIMD array of processors for the computation of the shadow
rays and, if successful, runs all intersect computations inparallel on the invaded and
then infected array. Note how the invade command speci�es the processor type and
the number of processors, and the infect command uses higher-oder programming3

by providing a method name as parameter, which is to be applied to all elements of
the second parameter, namely the array of data. In case an SIMD processor cannot
be obtained, the algorithm tries to obtain another ordinaryprocessor, and uses it for
the intersection computation. If this fails also, a sequential loop is executed on the
current processor. Note that resource-aware programming here means that the ap-
plication asks for the availability of processors of a speci�c type. For the re�ected
rays, a similar resource-aware computation is shown.

The second example (Figure 11) goes one step further into resource-aware pro-
gramming. The example is a traversal of a quadtree, where thecoordinates of the
current cell's vertices are parameters to a standard recursive tree traversal method.
Leafs, that is, the last recursions are always processed on the current processor. If,
however, the tree is “big enough,” the �rst three recursive calls are done in parallel,
if processors are available. If not enough processors can beinfected, recursive calls
are done on the current processor.

Note that the algorithm adapts dynamically to its own workload, as well as to the
available resources. Whether a tree is “big enough” to make invasion useful, not only
depends on the tree size, but also on system parameters such as cost of invasion or
communication overhead. Resource-aware programming musttake such overhead

3 Actually amapconstruct.
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// common code:
trace(Ray ray)
{

// shoot ray
hit = ray.intersect();
// determine color for hitpoint
return shade(hit);

}

// shade() without invasion:
shade(Hit hit)
{

// determine shadow rays
Ray shadowRays[] = computeShadowRays();
boolean occluded[];
for (int i = 0; i < shadowRays.length; i++)

occluded[i] = shadowRays[i].intersect();
// determine reflected rays
Ray reflRays[] = computeReflRays();
Color refl[];

for (int i = 0; i < reflRays.length; i++)
refl[i] = reflRays[i].trace();

// determine colors
return avgOcclusion(occlusion)

* avgColor(refl);
}

// shade() using invasion:
shade(Hit hit)
{

// shadow rays: coherent computation
Ray shadowRays[] = computeShadowRays();
boolean occluded[];
// try to do it SIMD-style
if ((ret = invade(SIMD,shadowRays.length))

== success)
occluded = infect(intersect,shadowRays);

// otherwise give me an extra core ?
else if ((ret = invade(MIMD,1)) == success)

occluded = infect(intersect,shadowRays);
// otherwise, I must do it on my own
else

for (int i = 0; i < shadowRays.length; i++)
occluded[i] = shadowRays[i].intersect();

// reflection rays: non coherent,
// SIMD doesn't make sense
Ray reflRays[] = computeReflRays();
Color refl[];
// potentially we can use
// nrOfReflectionRays processors
ret = invade(MIMD,reflRays.length);
if (ret == success)

refl[] = infect(trace,reflRays);
else

// do it on my own
for (int i = 0; i < reflRays.length; i++)

refl[i] = reflRays[i].trace();
return avgOcclusion(occlusion) * avgColor(refl);

}

Fig. 10 Pseudocode for an invasive ray tracer. The upper code of the shader shows a simple
sequential code. The lower code is invasive and relies on resource-aware programming.

into account when deciding about invasions. Notably, invasion also adds �exibility
and fault-tolerance.
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quadtreeTraversal(v1, v2, v3, v4) {
if (isQuadtreeLeaf(v1, v2, v3, v4}) {

processLeaf(v1, v2, v3, v4);
} else {

if (isSmallTree(v1,v2,v3,v4))
numCores = 0

else {
claim = invade(3);
numCores = claim.length;

}
vctr = (v1+v2+v3+v4)/4;

// last recursive call is
// always on current processor
// other recursive calls infect,
// if processors available
// and tree big enough

if (numCores>0) {
infect(claim[1], quadTreeTraversal(

(v1+v2)/2, v2, (v2+v3)/3, vctr));
numCores--;

}
else quadTreeTraversal((v1+v2)/2, v2,

(v2+v3)/3, vctr);
if (numCores>0) {

infect(claim[2], quadTreeTraversal(
vctr, (v2+v3)/2, v3, (v3+v4)/2));

numCores--;
}
else quadTreeTraversal(vctr, (v2+v3)/2,

v3, (v3+v4)/2);
if (numCores>0) {

infect(claim[3], quadTreeTraversal(
(v3+v4)/2, vctr, (v1+v4)/2, v4));

numCores--;
}
else quadTreeTraversal((v3+v4)/2, vctr,

(v1+v4)/2, v4);

quadTreeTraversal(v1, (v1+v4)/2,
vctr, (v1+v2)/2);

}
}

Fig. 11 Invasive quadtree traversal. The algorithm dynamically adapts to the available resources
and the subtree size.

The next example is an invasive version of the Shearsort algorithm (Fig. 12).
Shearsort is a parallel sorting algorithm that works onn� m-grids, for anyn (width)
andm(height). It performs(n+ m) � (dlogme+ 1) steps. An invasive implementation
will try to invade ann� mgrid of processors, but will not necessarily obtain all these
processors. If it gets ann0� m0-grid, n0� n, m0� m, it adapts to these values. Most
signi�cantly, it may choose to use the received grid as anm0� n0-grid, rather than
ann0� m0-grid.

The pseudocode thus uses invade to obtain an initial row ofm0 processors, and
for each row processor a column ofn0 additional processors. Note that the invade
command speci�es the direction of invasion: in the example,SOUTH and EAST.
For coarse-grained invasion such as in case of the ray-tracing example, the direction
of invasion is usually irrelevant, but for medium-grained or loop-level invasion, it
may be very relevant. Thus, a so-calledinvasive command spaceneeds to be de�ned
and include a variety of options for invade and infect.

Next, the rows are infected with a transposition sort algorithm, which is used to
do a parallel sort in the rows �rst and then a parallel sort in the columns. These row
and column sort phases constitute a round. Rounds are performed logm0+ 1 times,
and an appropriate subspace of the key space is sorted in parallel in each sequential
iteration. In this example, invasion is more �ne-grained than in the previous one;
here, resource-awareness means that the algorithm adapts to the available grid size,
where the initial invasion is based on the problem size.

Invasion can not only be used to receive then0� m0-grid. It is also possible to
check after every loop execution, i. e., after every round, whether the resources re-
quested in the beginning, became available in the meantime such that by a further
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Shearsort:
– determine optimal values forn andm;

(estimation of free resources)
– Invasion to the southn;
– obtainn0 processing elements (PE);
– Invasion from every PE to the eastm;
– obtain minimal number ofm0PEs;
– unused PEs are freed;
– PEs will handle a total of

dn� m=(n0� m0e keys;
– if n0> m0

then
do Shearsort on them0� n0 grid

else
do Shearsort on then0� m0 grid

program InvasiveShearSorter
/ * Variable declarations * /
int Pinv[M];
int N prime, M prime;
int keys[N * M];
/ * Parameter declarations * /
parameter M;
parameter N;
/ * Program blocks * /
Mprime = invade(PE(1,1), SOUTH,

M);
seq f

par (i >= 1 and i <= M prime)
f

Pinv[i] = invade(PE(i,1),
EAST, N);

g
N prime

= MIN[1 <= i <= M]
Pinv[i];

/ * Free PEs again such that all
arrays have

same size N prime * /
par (i >= 1 and i <= M) f

retreat(PE(i,1), N prime+1,
Pinv[i]);

g
if N prime > Mprime

swap(N prime, M prime)
infect columns and rows with Odd-Even

Transposition Sort
repeat dlog Mprime e+ 1 times
f
par (i >= 1 and i <= M prime) f

if odd(i) f
sort in row i the keys

2* N prime * (i-1)+1, ...,
2* N prime * i

into ascending order g
else f

sort in row i the keys
2* N prime * (i-1)+1, ...,

2* N prime * i
into descending order g

g

par (j >= 1 and j <= N prime) f
sort in column j the keys

j, j+2 * N prime, j+4 * N prime, j+6 * N prime ...
into ascending order g

par (j >= 1 and j <= N prime) f
sort in column j the keys

N prime+j, j+3 * N prime, j+5 * N prime,
j+7 * N prime ...

into ascending order g
g/ * Here, more invasion is possible:

Check
whether more resources are available in
the meanwhile and act appropriately */

g
g

Fig. 12 Pseudocode for invasive Shearsort.

invasion phase the execution can be sped up, as noted in the pseudocode of Fig-
ure 12.

While the previous examples demonstrated coarse-grained and medium-grained
invasion, the last example (Figure 13) demonstrates �ne-grained invasion at the loop
level. For every iteration of a parallelised loop, a separate processor element may be
invaded. To avoid the overhead ofi-let incarnation, there is just one controlleri-let
which synchronises all the invaded processor elements of a tightly-coupled proces-
sor array (TCPA) at a maximal invasion speed of a single clockcycle/processor.
Each processor element is infected with “code 2” (Figure 13,right column) and ex-
ecutes the initial loop program in parallel. This kind of invasion is particularly suited
for a myriad of nested loop algorithms (loop-level parallelism).

All examples follow a more generic scheme and are presented here to give a bet-
ter idea of the invasive process (cf. Figure 14). In particular,invade , infect and
retreat operate on sets of resources and processes, called “claims”and “teams.”
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Sequential C code:
for (i=0; i<T; i++)

for (j=0; j<N; j++)
y[i] += a[j] * u[i-j];

Code 1 (sequential assembler code):
; write input to feedback FIFO of
depth N
1: mov ffo, in0
; set the number of Taps
2: mov r0, N
3: mov r2, 0
; filter coefficient a
4: mul r1, ffo, a
5: add r2, r2, r1
; decrement the tap
6: sub r0, r0,1
; loop N times
7: if zeroflag!=true jmp 4
; get the output
8: mov out1, r2
9: jmp 1

Control code (pseudo notation):
while (stop!=1) do

P = invade(N)
if (P>0) then

// execute code on P processors
infect(P, ProgID)
for (i=0; i<T; i++) do

Code 2
end for
retreat()

else
// execute code on one processor
for (i=0; i<T; i++) do

Code 1
end for

end if
end while

Code 2 (VLIW program):
add out1 r0 in1, mul r0 in0 a, mov out0 in0

Fig. 13 FIR �lter exploiting loop-level invasion. Sequential C andassembler code is shown left.
To the right, thei-let code controlling an invaded TCPA is shown, as well as theassembler code
(VLIW) executed on each invaded processing element.

claim = invade(type, quantity, properties);
if (!useful(claim)) / * unrealisable claim request * /

raise(IMPROPER_CLAIM);

team = assort(claim, code, data);
if (!viable(team)) / * inadmissible team assembly * /

raise(UNVIABLE_TEAM);

infect(claim, team); / * employ resource(s) * /
retreat(claim); / * clean-up of resource(s) * /

Fig. 14 Pattern of invasive programming (in the programming language C) by adopting an operat-
ing system machine level of abstraction. Imagine requests of invade , infect andretreat as
“system calls” to an abstract machine, for example, an operating system, while all other primitives
execute as part of a run-time system or even an application program by using that machine.

This example also demonstrates the optional integration ofexception handling con-
cepts by means of which resource-aware application programs are enabled to re�ect
on the outcome of claim and team assembly. Handling an “invasion exception” may
result in reissuinginvade with alternate parameter values. Similar concepts hold
with respect to the marshalling of a team (that is, assembly of code and data sections)
to �t a selected claim. Note that further origins of invasionexceptions may be the
implementations ofinvade , infect andretreat . At the level of abstraction
assumed in Figure 14, this eventually implies that the operating system will be in
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charge of raising exceptions. Adequate linguistic supportfor robustresource-aware
programming like this comes with the exception handling concept of X10 [2].

Let us conclude with the important remark that true resource-aware program-
ming will not just check the availability of processors. A resource-aware applica-
tion in general will �rst of all determine its own needs basedon the dynamic work
load, then check for available resources of a speci�c kind and �nally infect the
obtained resources. The “kind of resource” may include parameters such as per-
mission, speed, or even processor temperature. In the background, the operating
system and the recon�gurable hardware cooperate to give theapplication its desired
resources in the most ef�cient and appropriate way.

Expected Impact and Risks

In the following, we summarise the expected bene�ts and impact factors we see
for a broad and multi-disciplinary research in invasive computing but also potential
risks.
Impact. We have motivated invasive computing as a means to cope with the explod-
ing complexity of future massively parallel MPSoCs with themajor call to provide
scalability, higher resource utilisation higher ef�ciency and also higher speed as
compared to applications with statically partitioned allocation of resources. We in-
tend to achieve these goals on the basis ofresource-aware programmingandnew
recon�gurable MPSoC architecture inventions. Both revolutionary architectures as
well as new programming concepts in synergy shall provide a boost in ef�ciency
and usability of future MPSoC platforms that are expected tocontain 1000 and
more processors.

The areas in which research in invasive computing might create a substantial
impact are summarized as follows:

� Processor Architecture of Future Multi-Core Systems: Even if we will not be
able to compete in our design concepts and demonstrators with high-end pro-
cessor designs as developed by teams of 100 and more designers at processor
companies such as Intel and AMD, we believe that some of our architectural in-
ventions will in�uence their way of how to design large processor systems in the
future. For example, without research and inventions on previously non-common
RISC architectures performed at universities such as by Hennessy and Patterson,
the chip design companies might still produce other types ofprocessors.

� Design Environments for Programming Parallel Many-Processor Systems:
Similarly, our paradigm of invasive programs and resource-aware programming
will have an impact on future programming languages and programming envi-
ronments for the development of parallel programs.

� Design of Parallel Algorithms: Even more, the idea of invasive algorithm de-
sign will in�uence the development of parallel algorithms as well. Never before
algorithm designers had the opportunity to dynamically adapt an algorithm's be-
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haviour and parallelism to the dynamic work load and the dynamic availability
of resources.

Risks. Nevertheless, we do not conceal that our challenging goals might also hide
some risks:

� Acceptance of Resource-aware Programming: At a �rst look, resource-aware
programming seems questionable and counter-productive when looking at mod-
ern software-technological principles: High level-languages as well as operating
systems have, for good reason, more and more abstracted awayfrom speci�c
hardware details or resource politics. Instead of offeringprogress, resource-aware
programming thus sounds contradictory and a step back into the past when look-
ing at the achievements of modern programming languages, which abstract away
from speci�c architectural details.

� Cost in Terms of Time and Area: Increasing the non-determinism by self-
organised algorithm execution when allowing programs to control hardware re-
sources directly might naturally lead to cases with lower performance and worse
resource utilisation than statically mapped and scheduledapplications, of course
as the time to invade and retreat from resource occupations produces overhead.
Any comparison of cost and speed-up against a statically mapped non-invasive
algorithm must therefore be done carefully and, in order to be fair, consider the
case of overload situations: Here, due to invasion, resources will be freed which
enables other applications to dynamically claim more resources than in a stat-
ically partitioned case between several competing applications. If the degree of
parallelism of considered applications is varying in time,also speed-up will result
naturally over static processor partitions apart from higher resource utilisation,
savings of power and fault-tolerance. A natural scenario ofinvasive computing
is therefore that not only one but several programs are simultaneously trying to
invade a common pool of resources.

In summary, it is evident thatthere is a price to payin order to exploit the ben-
e�ts of invasive computing. Therefore, it needs to be investigated carefully where
the border of centralised control versus invasive control reaches its greatest bene-
�t and how a maximum of abstraction can be maintained even forresource-aware
computing. The goal of this survey was to give an overview into the fascinating
emerging paradigm of invasive computing that might solve many problems of MP-
SoC architectures and their programming with more than 1000cores for the years
2020 and beyond. Here, only the basic principles and �elds ofrequired research
could be drafted.
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